# Klamath Tracking and Accounting Program

Klamath Basin Monitoring Program 11.05.12



# Klamath Basin Adaptive Management Framework





**Program Goals** 

Increase the pace and reduce the cost of improving Klamath Basin water quality to support all water-related uses in the Basin, including, but not limited to, the recovery of native fish.

# **Environmental Accounting**

#### **Actions & Outcomes**



# **Environmental Accounting**

**Actions & Outcomes** 



# Why?

- Need to coordinate multiple programs/initiatives
- Desire to track individual and cumulative effect of conservation/restoration actions
- Measure progress towards watershed goals



### Klamath Tracking and Accounting Program

**Program Participants** 



# **Program Objectives and Value**

- Coordinated, transparent, credible framework for tracking improvements throughout the basin
- Link investments to ecosystem benefits
- Provide assurances for funders



# **Program Objectives and Value**

- Framework for pooling resources
- Allow water quality investments through offsets or trading



# Restoration for compliance

Where appropriate, convert compliance...





Cooling Tower.

# **Crediting Protocol**

#### Quantification = Translation = Investment



What did you do?

- Trees planted
- Stream miles/acres treated
- Kilocalories
- Lbs of nitrogen, phosphorus, sediment

### **Program Components**



### **KBMP Monitoring Framework**

# **Program Connections**

- Watershed context
- Ability to evaluate progress towards meeting basin-wide water quality goals
- Linking actions to multiple scales



# Klamath TAP Development



#### **Pilot Phase**

- Solicit for and initiate pilot projects
- Test existing tools and protocols
- Adaptive management targeted monitoring, tool refinement, protocol revision



# **Next Steps**

#### California 319 (Received)

- Pilot producation entre productes port
- Begin tobt Callbrattion
- Stakeholder Engagement

### Oregon 319 (Pre-proposal phase)

- Endimptete Alitoration
- Stakeholder Support



# **Questions?**

Klamath Basin Monitoring Program 11.05.12





# **Nutrient Tracking Tool**

- Quantifies edge-of-field reductions in nitrogen and phosphorus on farms and ranches
- Developed by USDA for water quality crediting
- Uses information on soils, weather and agricultural practices to calculate the effects of implementing conservation practices
- Outputs for Nitrogen, Phosphorus, Sediment (Lbs/year) Flow and yield.

#### **Soils**

- Web Soil Survey
- Includes soil type and slope

Willamette Silt Loam 3-7% Slope

Woodburn Silt Loam



#### **Crops**

- Standard set of crop types with management
- Edit management actions and timing (planting, tilling, mowing, harvest, fertilize, irrigate etc)
- Conservation practices (fencing, buffers, cover crop etc)





# Assumptions/limitations

- One-directional flow
- No rills, gullies, or direct conveyance
- Field scale: modeled only to edge of field, not through adjacent fields or through the water body
- Not all crops have profile yet











# Actions NTT can model

- Riparian buffer/restoration
- Fencing/animal exclusion
- Cover crops
- Crop rotation
- Conservation tillage
- Changes in nutrient application
- Filter strips



- NTT runs on 36 projects in Klamath, Tualatin, and Yamhill
- Literature review
- Expert opinion on NTT outputs
- Focus on N and P outputs, not on crop yield, flow, or sediment

#### **Heat Source**

- Created by Oregon
   Department of
   Environmental Quality
   to model thermal inputs
   to freshwater systems
- Shade-a-lator is a component that models solar inputs





Solar energy based on:

- Location (lat/long)
- Time of year
- Time step (dt)

Energy that reaches the stream itself is based on:

- Elevation
- Stream wetted width
- Aspect
- Topography
- Vegetation (height, density, overhang)



# Example

# Sprague River Riparian Fencing





Propose Eligible Project

Quantify Benefits Verify Conditions Register & Issue

Track

### **Sprague River Riparian Fencing**



| Benefit                 | Baseline | Projected Post-Action | Projected<br>Gain |
|-------------------------|----------|-----------------------|-------------------|
| Phosphorous (TP lbs/yr) | 20       | 5                     | 15                |
| Nitrogen (TN lbs/yr)    | 100      | 60                    | 40                |

Propose Eligible Project Verify Conditions Verify Issue Track

### **Sprague River Riparian Fencing**



| Benefit                 | Baseline | Projected Post-Action | Projected<br>Gain |
|-------------------------|----------|-----------------------|-------------------|
| Phosphorous (TP lbs/yr) | 20       | 5                     | 15                |
| Nitrogen (TN lbs/yr)    | 100      | 60                    | 40                |

Propose Eligible Project Quantify Benefits Verify Conditions Issue Track

### **Sprague River Riparian Fencing**



| Benefit                 | Baseline | Projected Post-Action | Projected<br>Gain |
|-------------------------|----------|-----------------------|-------------------|
| Phosphorous (TP lbs/yr) | 20       | 5                     | 15                |
| Nitrogen (TN lbs/yr)    | 100      | 60                    | 40                |

Track

Propose Eligible Project Quantify Conditions Register & Issue